Digital Asset

The Digital Asset Platform

Ben Lippmeier Sydney Blockchain Symposium 12th February 2018

Data Quality

Reliable Mainframe DB "Big Iron"

Siloed Data

.. is Fractured Data

Distributed Permissioned Ledger (Logical View)

Distributed Permissioned Ledger (Physical View)

Smart Contracts

and the

Digital Asset Modelling Language (DAML)

Smart Contracts Provide Interpretation of Data

Contract Data (payload)

IOU "Alice" "Bob" 100 AUD

Contract Choices (methods)

```
call (acct: AccountId) = ...
transfer (party: PartyId) = ...
split (amount: Decimal) = ...
```

DAML: The Digital Asset Modelling Language

- The Rules of the Game are encoded as DAML programs.
- The Rules are distributed and kept in sync along with the data.
- Static program analysis ensures that only authorised parties can exercise contract choices.

DAML: The Digital Asset Modelling Language

- DAML is a typed functional language with UXTO semantics
- The only mutable state is the contract data.
- Exercising a choice on a contract consumes the contract.
- Common programming utilities, workflows and asset models are available as libraries (with no GAS cost, as in Ethereum)

Node Implementation

Client Application

- Interfaces to Client Systems
- Talks to custom GUI's
- Runs the strategy.

The DAML contracts specify
The Rules of the Game
The Client App specifies
The Strategy to Play it.

App. Prog. Interface (API)

 Provides client an interface to create and exercise contracts.

 Can be as simple as a REST endpoint.

Client Application API DAMI DAMI **Application** Libs DAML Interpreter ACS **PCS** GSL **DA Node**

DAML Application and Libs

Defines the rules of the game:
 Who can buy an asset?
 how can it be sold?
 can there be multiple owners?
 do owners receive dividends?

 Libraries provide common infrastructure and patterns.

Client Application API DAMI DAMI **Application** Libs **DAML** Interpreter ACS **PCS** GSL **DA Node**

DAML Interpreter

- Executes the DAML programs.
- Consumes data from the ACS (Active Contract Store).
- Checks that only authorised parties can exercise contract choices.

PCS Private Contract Store

 Holds all contracts that have been visible to the node at some point in time.

ACS Active Contract Store

 Holds the active contracts, the ones that are currently still in force and can have their choices exercised.

GSL Global Sync. Log

 Provides a global order of contract execution times.

 Provides blinded event notifications to nodes.

 Notifications are crypto. blinded to avoid leaking information via traffic and timing analysis.

Comparison

- Permissioned Ledger
- Physical data segregation
- "Trust but verify"
- Fewer nodes, high data rate
- No baked-in asset model, custom assets defined in code.
- Contracts written in DAML.

- Public Ledger
- All nodes can see all data
- Actively hostile environment
- Many nodes, lower data rate
- Baked in native asset (ETH), other assets defined in code.
- Contracts compiled to EVM.

Questions?